游客
题文

在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点.
 
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点F,使BF⊥平面AEP,若存在,确定点P的位置;若不存在,说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知椭圆的中心在原点,焦点在x轴上,一个顶点A(0,-1),且右焦点到右准线的距离为.
(1)求椭圆的方程.
(2)试问是否能找到一条斜率为k(k≠0)的直线l,使l与椭圆交于不同两点M、N且满足|AM|=|AN|?若这样的直线存在,求出k的取值范围;若不存在,请说明理由.

如图,过点B(0,-b)作椭圆=1(a>b>0)的弦,求这些弦长的最大值.

设椭圆ax2+by2=1与直线x+y=1相交于A、B两点,且|AB|=2.又AB的中点M与椭圆中心连线的斜率为,求椭圆的方程.

求椭圆=1(a>b>0)的内接矩形面积的最大值.

设椭圆(φ为参数)上一点M与原点的连线与x轴正方向所成角为,求点M的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号