已知数列的前
项和
。(1)求数列的通项公式
;(2)求的最大或最小值。
在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(,
),半径r=
,点P的极坐标为(2,π),过P作直线l交圆C于A,B两点.
(1)求圆C的直角坐标方程;(2)求|PA|•|PB|的值.
如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,连接AC,过点A作AD⊥CD于点D,交⊙O于点E.
(Ⅰ)证明:∠AOC=2∠ACD;(Ⅱ)证明:AB•CD=AC•CE.
已知函数f(x)=ex﹣m﹣ln(2x).
(Ⅰ)设x=1是函数f(x)的极值点,求m的值并讨论f(x)的单调性;
(Ⅱ)当m≤2时,证明:f(x)>﹣ln2.
如图,已知椭圆的右顶点为A(2,0),点P(2e,
)在椭圆上(e为椭圆的离心率).
(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且
,求实数λ的值.
甲、乙两人玩投篮游戏,规则如下:两人轮流投篮,每人至多投2次,甲先投,若有人投中即停止投篮,结束游戏,已知甲每次投中的概率为,乙每次投中的概率为
求:
(Ⅰ)乙投篮次数不超过1次的概率.
(Ⅱ)记甲、乙两人投篮次数和为ξ,求ξ的分布列和数学期望.