数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n=1,2,3,…),证明:
(1)数列是等比数列;
(2)Sn+1=4an.
(本小题满分12分)
“神州”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为
).当返回舱距地面1万米的
点时(假定以后垂直下落,并在
点着陆),
救援中心测得飞船位于其南偏东
方向,仰角为
,
救援中心测得飞船位于其南偏西
方向,仰角为
.
救援中心测得着陆点
位于其正东方向.
(1)求两救援中心间的距离;
(2)救援中心与着陆点
间的距离.
(本小题满分10分)
选修4-5:不等式选讲
设函数,
.
(1)解不等式:;
(2)若的定义域为
,求实数
的取值范围.
(本小题满分10分)
选修4-4:坐标系与参数方程选讲
已知曲线的参数方程为
(
为参数),曲线
的参数方程为
(
为参数).
(1)若将曲线与
上各点的横坐标都缩短为原来的一半,分别得到曲线
和
,求出曲线
和
的普通方程;
(2)以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,求过极点且与
垂直
的直线的极坐标方程.
(本小题满分10分)
选修4-1:几何证明选讲
如图,已知点在⊙
直径的延长线上,
切⊙
于
点,
是
的平分线,且交
于
点,交
于
点.
(1)求的度数;
(2)若,求
.
(本小题满分12分)
已知,
.
(1)求的单调区间;
(2)若时,
恒成立,求实数
的取值范围;
(3)当时,证明:
.