据统计某种汽车的最高车速为120千米∕时,在匀速行驶时每小时的耗油量(升)与行驶速度
(千米∕时)之间有如下函数关系:
。已知甲、乙两地相距100千米。
(1)若汽车以40千米∕时的速度匀速行驶,则从甲地到乙地需耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
(本小题满分13分)已知函数
(1)若在
上是减函数,求
的最大值;
(2)若的单调递减区间是
,求函数y=
图像过点
的切线与两坐标轴围成图形的面积。
(本小题满分12分)已知关于x的二次函数f(x)=ax2-2bx+1.
(1)已知集合P={-2,1,2 },Q={-1,1,2},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区域内随机任取一点(a,b).求函数y=f(x)在区间[1,+∞)上是增函数的概率.
如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE.
(2)设点M为线段AB的中点,点N为线段
本题满分12分)
已知数列满足
,它的前
项和为
,且
.
①求通项,
②若,求数列
的前
项和的最小值.
(本小题满分12分) 已知的周长为
,且
.
(1)求边长的值;
(2)若,求
的值.