如图所示,三个可视为质点的滑块质量分别为mA=m,mB=2m,mC=3m,放在光滑水平面上,三滑块均在同一直线上.一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,B、C均静止。现滑块A以速度v0=与滑块B发生碰撞(碰撞时间极短)后粘在一起,并压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平面上匀速运动,求:
①被压缩弹簧的最大弹性势能
②滑块C脱离弹簧后A、B、C三者的速度
某装置用磁场控制带电粒子的运动,工作原理如图所示。装置的长为
,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为
、方向与纸面垂直且相反,两磁场的间距为
。装置右端有一收集板,
为板上的三点,
位于轴线
上,
分别位于下方磁场的上、下边界上。在纸面内,质量为
、电荷量为
的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达
点。改变粒子入射速度的大小,可以控制粒子到达收集板上的位置。不计粒子的重力。
(1)求磁场区域的宽度
;
(2)欲使粒子到达收集板的位置从
点移到
点,求粒子入射速度的最小变化量
;
(3)欲使粒子到达
点,求粒子入射速度大小的可能值。
如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为
,长为
,导轨平面与水平面的夹角为
,在导轨的中部刷有一段长为
的薄绝缘涂层。匀强磁场的磁感应强度大小为
,方向与导轨平面垂直。质量为
的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为
,其他部分的电阻均不计,重力加速度为
。求:
(1)导体棒与涂层间的动摩擦因数 ;
(2)导体棒匀速运动的速度大小 ;
(3)整个运动过程中,电阻产生的焦耳热 。
牛顿的《自然哲学的数学原理》中记载, 、 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为 。分离速度是指碰撞后 对 的速度,接近速度是指碰撞前 对 的速度。若上述过程是质量为2m的玻璃球 以速度 碰撞质量为 的静止玻璃球 ,且为对心碰撞,求碰撞后 、 的速度大小。
蝴蝶的翅膀在阳光的照射下呈现出闪亮耀眼的蓝色光芒,这是因为光照射到翅膀的鳞片上发生了干涉。电子显微镜下鳞片结构的示意图见题1 图。一束光以入射角
从
点入射,经过折射和反射后从
点出射。设鳞片的折射率为
,厚度为
,两片之间空气层厚度为
。取光在空气中的速度为
,求光从
到
所需的时间
。
一种海浪发电机的气室如图所示。工作时,活塞随海浪上升或下降,改变气室中空气的压强,从而驱动进气阀门和出气阀门打开或关闭。气室先后经历吸入、压缩和排出空气的过程,推动出气口处的装置发电。气室中的空气可视为理想气体。
(1)下列对理想气体的理解,正确的有。
A. | 理想气体实际上并不存在,只是一种理想模型 |
B. | 只要气体压强不是很高就可视为理想气体 |
C. | 一定质量的某种理想气体的内能与温度、体积都有关 |
D. | 在任何温度、任何压强下,理想气体都遵循气体实验定律 |
(2)压缩过程中,两个阀门均关闭。若此过程中,气室中的气体与外界无热量交换,内能增加了3.4×104
,则该气体的分子平均动能(选填"增大"、"减小"或"不变"),活塞对该气体所做的功(选填"大于"、"小于"或"等于")3.4×104
。
(3)上述过程中,气体刚被压缩时的温度为27℃,体积为0.224
3,压强为1个标准大气压。已知1
气体在1个标准大气压、0℃时的体积为22.4
,阿伏加德罗常数
=6.02×1023
-1。计算此时气室中气体的分子数。(计算结果保留一位有效数字)