已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.
已知函数(
).
(Ⅰ)若函数在定义域内单调递增,求实数
的取值范围;
(Ⅱ)设,
,
(
)是
图象上的任意两点,若
,使得
,求证:
.
已知椭圆:
,
是椭圆的上、下焦点,
是椭圆上任意一点,且
的最大值是3,最小值为2.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若,且过
的动直线
交椭圆
于
,求
的面积的最大值.
已知四棱锥的底面是平行四边形,
分别是
的中点,
,
,
.
(Ⅰ)求证:;
(Ⅱ)若,求二面角
的余弦值.
某市举行青年教师数学解题大赛,从中随机抽取30名老师,将他们的竞赛成绩(满分100分,成绩均为不低于30分的整数)分成六段:,
, ,
后得到如图的频率分布直方图.
(Ⅰ)在这30名老师中随机抽取3名老师.求的值,以及同时满足下列两个条件的概率:①有且仅有1名老师成绩不低于90分;②成绩在
内至多1名老师;
(Ⅱ)在成绩在内的老师中随机抽取3名老师进行诊断调查,设成绩在
内的人数为随机变量
,求
的分布列及其期望.
在中,内角
、
、
所对的边分别为
,
,
,
,且
.
(Ⅰ)求角的值;
(Ⅱ)若点是
中角
的外角内的一点,且
,过点
,
,垂足分别为
,
.求
的最大值.