如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1;
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.
如图,四棱柱
的底面
是正方形,
为底面中心,
平面
,
.
(1)证明:
平面
;
(2)求三棱柱
的体积.
设
表示数列
的前
项和.
(1)若
为等差数列,推导
的计算公式;
(2)若
,且对所有正整数
,有
.判断
是否为等比数列.
已知向量
, 设函数
.
(1)求
的最小正周期.
(2)求
在
上的最大值和最小值.
设函数 . 为常数且 .
(1)当
时,求
;
(2)若
满足
,但
,则称
为
的二阶周期点.证明函数
有且仅有两个二阶周期点,并求二阶周期点
;
(3)对于(2)中的
,设
,记
的面积为
,求
在区间
上的最大值和最小值。
椭圆
的离心率
.
(1)求椭圆
的方程;
(2)如图,
是椭圆
的顶点,
是椭圆
上除顶点外的任意一点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
.证明:
为定值.