已知椭圆=1(a>b>0),点P在椭圆上.(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足AQ=AO,求直线OQ的斜率的值.
如图,已知在直四棱柱中,,,. (1)求证:平面; (2)设是上一点,试确定的位置,使平面,并说明理由.
已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为. (1)求抛物线的标准方程;(2)求双曲线的标准方程.
过椭圆的一个焦点的直线交椭圆于、两点,求面积的最大值.(为坐标原点)
直线与双曲线相交于两点, (1)求的取值范围 (2)当为何值时,以为直径的圆过坐标原点.
如图,等边与直角梯形垂直,,,,.若分别为的中点.(1)求的值; (2)求面与面所成的二面角大小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号