在中,
,分别是角
所对边的长,
,且
(1)求的面积;
(2)若,求角C.
(本小题满分12分)标准椭圆的两焦点为
,
在椭圆上,且
.(1)求椭圆方程;(2)若N在椭圆上,O为原点,直线
的方向向量为
,若
交椭圆于A、B两点,且NA、NB与
轴围成的三角形是等腰三角形(两腰所在的直线是NA、NB),则称N点为椭圆的特征点,求该椭圆的特征点.
(本小题满分12分)已知函数,且函数
的图象关于原点对称,其图象在
处的切线方程为
(1)求
的解析式;(2)是否存在区间
使得函数
的定义域和值域均为
,且其解析式为f(x)的解析式?若存在,求出这样的一个区间[m,n];若不存在,则说明理由.
(本小题满分12分)已知ABCD是矩形,,E、F分别是线段AB、BC的中点,
面ABCD.(1)
证明:PF⊥FD;
(2)在PA上找一点G,使得EG∥平面PFD.
(本小题满分10分)
已知向量,定义函数
,求函数
的最小正周期、单调递增区间.
实系数方程f(x)=x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求:
(1)的值域;
(2)(a-1)2+(b-2)2的值域;
(3)a+b-3的值域.