(本题12分)
中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且
,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7。求这两条曲线的方程.
设点A为单位圆上一定点,求下列事件发生的概率:
(1)在该圆上任取一点B,使AB间劣弧长不超过;
(2)在该圆上任取一点B,使弦AB的长度不超过。
已知直线与椭圆
相交于A、B两点.。
(1)若椭圆的离心率为,焦距为2,求线段AB的长;
(2)若向量与向量
互相垂直(其中O为坐标原点),当椭圆的离心率e=2时,求椭圆的长轴的长.
.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)设SD = 2CD,求二面角A-EF-D的大小;
已知抛物线C:,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为
,求点M的坐标(x0,y0);
若直线l的方向向量是=(1,2,2),平面α的法向量是
=(-1,3,0),试求直线l与平面α所成角的余弦值。