平面直角坐标中,对称轴平行于y轴的抛物线经过原点O,其顶点坐标为(3,);Rt△ABC的直角边BC在x轴上,直角顶点C的坐标为(
,0),且BC=5,AC=3(如图1).
图1 图2
(1)求出该抛物线的解析式;
(2)将Rt△ABC沿x轴向右平移,当点A落在(1)中所求抛物线上时Rt△ABC停止移动.D(0,4)为y轴上一点,设点B的横坐标为m,△DAB的面积为s.
①分别求出点B位于原点左侧、右侧(含原点O)时,s与m之间的函数关系式,并写出相应自变量m的取值范围(可在图1、图2中画出探求);
②当点B位于原点左侧时,是否存在实数m,使得△DAB为直角三角形?若存在,直接写出m的值;若不存在,请说明理由.
如图是由梯子A B和梯子AC搭成的脚手架,其中AB=AC=5米,∠α=70°.
(1)求梯子顶端A离地面的高度AD的长和两梯脚之间的距离BC的长.
(2)生活经验告诉我们,增大两梯脚之间的距离可降低梯子的高度,若BC长达到6米,则梯子的高度下降多少米?(以上结果均精确到0.1米,供参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,让两个转盘分别自由转动一次,当转盘指针落在分界线上时,重新转动.
(1)请你画树状图或列表表示所有等可能的结果.
(2)求两个指针落在区域的颜色能配成绿色的概率.(黄、蓝两色混合配成绿色)
解方程:.
下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7,根据表中所提供的信息,以下判断正确的是().
①a>0;
②9<m<16;
③k≤9;
④b2≤4a(c﹣k).
x |
… |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
… |
y |
… |
16 |
m |
9 |
k |
9 |
m |
16 |
… |
A.①② B.③④ C.①②④ D.①③④
在直角梯形ABCD中,∠D=90°,高CD=cm(如图1),动点P、Q同时从点A出发,点P沿AB、BC运动到点C停止,速度为1cm/s,点Q沿AD运动到点D停止,速度为2cm/s,而点P到达点B时,点Q正好到达点D,设P、Q同时从A点出发的时间为t(s)时,△APQ的面积为y(cm2)所形成的函数图象如图(2)所示,其中MN表示一条平行于X轴的线段.
(1)求出BC的长和点M的坐标.
(2)当点P在线段AB上运动时,直线PQ截梯形所得三角形部分沿PQ向上折叠,设折叠后与梯形重叠部分的面积为S cm2,请求出S与t的函数关系式.
(3)在P、Q的整个运动过程中,将直线PQ截梯形所得三角形部分沿PQ折叠.是否存在某一时刻,使得折叠后与梯形重叠部分的面积为直角梯形ABCD面积的?若存在,求出t的值;若不存在,试说明理由.