游客
题文

能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本电中性的两极板中的一个极板移到另一个极板的过程. 在移动过程中克服电场力做功,电源的电能转化为电容器的电场能.实验表明:电容器两极间的电压与电容器所带电量如图所示.

(1)对于直线运动,教科书中讲解了由v-t图像求位移的方法.请你借鉴此方法,根据图示的Q-U图像,若电容器电容为C,两极板间电压为U,求电容器所储存的电场能.
(2)如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为C的电容器.框架上一质量为m、长为L的金属棒平行于地面放置,离地面的高度为h.磁感应强度为B的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.

求a. 金属棒落地时的速度大小
b. 金属棒从静止释放到落到地面的时间

科目 物理   题型 计算题   难度 中等
知识点: 法拉第电磁感应定律 观察电容器的充、放电现象
登录免费查看答案和解析
相关试题

如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计。在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g。求:

(1)磁感应强度的大小;
(2)灯泡正常发光时导体棒的运动速率。

面积S = 0.2m2、n = 100匝的圆形线圈,处在如图所示的磁场内,磁感应强度随时间t变化的规律是B = 0.02t,R = 3Ω,C = 30μF,线圈电阻r = 1Ω,求:

(1)通过R的电流大小和方向
(2)电容器的电荷量。

如图所示,ABCD为一个正方形,匀强电场与这个正方形所在平面平行,把一个电量为的负电荷从A点移到B点,电场力做功;把一个电量为的正电荷从B点移到C点,克服电场力做功,设A点电势为零,求:

(1)B、C两点的电势;
(2)把电量为q2的正电荷从C点移到D点电场力做的功。

如图a所示,与水平方向成37°角的直线MN下方有与MN垂直向上的匀强电场,现将一重力不计、比荷的正电荷置于电场中的O点由静止释放,经过后,电荷以v0=1.5×l04m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻)。求:

(1)匀强电场的电场强度E;
(2)图b中时刻电荷与第一次通过MN的位置相距多远;(3)如果电荷第一次通过MN的位置到N点的距离d=68cm,在N点上方且垂直MN放置足够大的挡板.求电荷从O点出发运动到挡板所需的时间。

如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,极板长L=0.1m,两板间距离d=0.4cm,有一束由相同微粒组成的带正电粒子流,以相同的初速度V0从两板中央依次水平射入(每隔0.1s射入一个微粒),由于重力作用微粒能落到下板,已知微粒质量m=2×10-6kg,电量q=l×10-8C,电容器电容C=l×10-6F。取g=10m/s2,整个装置处在真空中。求:

(1)第一颗微粒落在下板离端点A距离为的O点,微粒射人的初速度V0应为多大?
(2)以上述速度V0射入的带电微粒最多能有多少个落在下极板上?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号