观察图形,解答问题:
(1)按下表已填写的形式填写表中的空格:
|
图① |
图② |
图③ |
三个角上三个数的积 |
1×(-1)×2=-2 |
(-3)×(-4)×(-5)=-60 |
|
三个角上三个数的和 |
1+(-1)+2=2 |
(-3)+(-4)+(-5)=-12 |
|
积与和的商 |
-2÷2=-1 |
|
|
(2)请用你发现的规律求出图④中的数y和图⑤中的数x.
已知x是一元二次方程x2-2x+1=0的根,求代数式的值.
如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G。
(1)求证:AF=GB;
(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
请认真阅读题意,并根据你的发现填空:
(1)将任何一组已知的勾股数中的每一个数都扩大为原来的正整数倍后,就得到一组新的勾股数,例如:3、4、5,我们把每一个数扩大为原来的2倍、3倍,则分别得到6、8、10和9、12、15,
若把每一个数都扩大为原来的12倍,就得到______________,
若把每一数都扩大为原来的n(n为正整数)倍,则得到_________________;
(2)对于任意一个大于1的奇数,存在着下列勾股数
若勾股数为3、4、5.则有
若勾股数为5、12、13, 则有
若勾股数为7、24、25, 则有
若勾股数为m(m为奇数)、n、______
则有=2n+1,用m表示n=_______
当m=17时,n=_______,此时勾股数为_______________.
△ABC中,AC=8,BC=6,在△ABE中,DE为AB边上的高,DE=12,S△ABE=60,求∠C的度数.