已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.(1)当直线AM的斜率为1时,求点M的坐标;(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
⑴求过点向圆所引的切线方程; ⑵过点向圆引二条切线,切点分别是,求直线的方程。
在正方体,求所成角的正弦值。
在正方体中, ⑴求证:∥平面 ⑵求与平面所成的角。
求与定点及定直线的距离的比是5:4的点P的轨迹
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点. (1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标; (2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号