设函数f(x)=x2+bx+c,其中b、c是某范围内的随机数,分别在下列条件下,求事件A“f(1)≤5且f(0)≤3”发生的概率.
(1)若随机数b,c∈{1,2,3,4};
(2)已知随机函数Rand()产生的随机数的范围为{x|0≤x≤1},b,c是算法语句b=4*Rand()和c=4*Rand()的执行结果.(注:符号“*”表示“乘号”)
(本小题满分12分)
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
(本小题满分12分)设点P的坐标为,直线l的方程为
.请写出点P到直线l的距离,并加以证明.
(本小题满分12分)
如图,FD垂直于矩形ABCD所在平面,CE//DF,.
(Ⅰ)求证:BE//平面ADF;
(Ⅱ)若矩形ABCD的一个边AB =,EF =
,则另一边BC的长为何值时,二面角B-EF-D的大小为450?
(本小题满分12分)
三角形的三个内角A、B、C所对边的长分别为、
、
,设向量
,若
//
.
(I)求角B的大小;
(II)求的取值范围.
(本小题满分15分)如图,在中,点
的坐标为
,点
在
轴上,点
在
轴的正半轴上,
,在
的延长线上取一点
,使
.
(Ⅰ)当点在
轴上移动时,求动点
的轨迹
;
(Ⅱ)自点引直线与轨迹
交于不同的两点
、
,点
关于
轴的对称点
记为,设
,点
的坐标为
.
(1)求证:;
(2)若,求
的取值范围.