(本小题满分15分)如图,在中,点
的坐标为
,点
在
轴上,点
在
轴的正半轴上,
,在
的延长线上取一点
,使
.
(Ⅰ)当点在
轴上移动时,求动点
的轨迹
;
(Ⅱ)自点引直线与轨迹
交于不同的两点
、
,点
关于
轴的对称点
记为,设
,点
的坐标为
.
(1)求证:;
(2)若,求
的取值范围.
已知函数的图像(如图所示)过点
、
和点
,且函数图像关于点
对称;直线
和
及
是它的渐近线.现要求根据给出的函数图像研究函数
的相关性质与图像,
(1)写出函数的定义域、值域及单调递增区间;
(2)作函数的大致图像(要充分反映由图像及条件给出的信息);
(3)试写出的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分
已知为坐标原点,点
,对于
有向量
,
(1)试问点是否在同一条直线上,若是,求出该直线的方程;若不是,请说明理由;
(2)是否在存在使
在圆
上或其内部,若存在求出
,若不存在说明理由.
一个棱长为的正方体的八个顶角上分别截去一个三棱锥,使截掉棱锥后的多面体有六个面为正八边形,八个面为正三角形(如图所示),
(1)求异面直线与
所成角的大小;
(2)求此多面体的体积(结果用最简根式表示).
已知函数.
(1)求函数的最小正周期;
(2 )当时,求函数
的最大值,最小值.
若椭圆的左右焦点分别为
,线段
被抛物线
的焦点
内分成了
的两段.
(1)求椭圆的离心率;
(2)过点的直线
交椭圆于不同两点
、
,且
,当
的面积最大时,求直线
的方程.