已知数列的前n项和为
,且满足
,
.
(1)求数列的通项公式
;
(2)设为数列{
}的前n项和,求
;
(3)设,证明:
.
(本题满分14分)
已知点及圆
:
.
(Ⅰ)若直线过点
且与圆心
的距离为1,求直线
的方程;
(Ⅱ)设过直线
与圆
交于
、
两点,当
时,求以
为直径的圆的方程;
(Ⅲ)设直线与圆
交于
,
两点,是否存在实数
,使得过点
的直线
垂直平分
弦
?若存在,求出实数
的值;若不存在,请说明理由.
(本题满分12分)
如图,已知所在的平面,
分别为
的中点,
,
(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)求三棱锥的体积.
(本题满分12分)
已知二次函数满足
且
.
(Ⅰ)求的解析式;
(Ⅱ)当时,不等式:
恒成立,求实数
的范围.
(本题满分12分)
如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:
)
(Ⅰ)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(Ⅱ)按照给出的尺寸,求该多面体的体积;
(Ⅲ)在所给直观图中连结
,证明:
∥面
(本题满分12分)
定义在上的函数
满足:①对任意
都有
;
②在
上是单调递增函数;③
.
(Ⅰ)求
的值;
(Ⅱ)证明为奇函数;
(Ⅲ)解不等式.