质量为m = 1kg的小木块(可看在质点),放在质量为M = 5kg的长木板的左端,如图所示.长木板放在光滑水平桌面上.小木块与长木板间的动摩擦因数μ= 0.1,长木板的长度L= 2.5m.系统处于静止状态.现为使小木块从长木板右端脱离出来,给小木块一个水平向右的瞬时冲量I,则冲量I至少是多大?(g取10m/s2)
如图所示,空间区域I、II有匀强电场和匀强磁场,MN、PQ为理想边界,I区域高度为d,II区域的高度足够大,匀强电场方向竖直向上;I、II区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外。一个质量为m、带电荷量为q的小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动。已知重力加速度为g。
(1)试判断小球的电性并求出电场强度E的大小;
(2)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h;
(3)试讨论在h取不同值时,带电小球第一次穿出I区域的过程中,电场力所做的功。
如图所示的xOy坐标系中,y轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B,方向垂直于xOy平面向里.P点的坐标为( 2L,0),Q1、Q2两点的坐标分别为(0, L),(0, -L).坐标为(,0)处的C点固定一平行于y轴放置的长为
的绝缘弹性挡板,C为挡板中点,带电粒子与弹性绝缘挡板碰撞前后,沿y方向分速度不变,沿x方向分速度反向,大小不变. 带负电的粒子质量为m,电量为q,不计粒子所受重力.若粒子在P点沿PQ1方向进入磁场,经磁场运动后,求:
(1)从Q1直接到达Q2处的粒子初速度大小;
(2)从Q1直接到达O点,粒子第一次经过x轴的交点坐标;
(3)只与挡板碰撞两次并能回到P点的粒子初速度大小.
(12分)提纯氘核技术对于核能利用具有重大价值.下图是从质子、氘核混合物中将质子和氘核分离的原理图,x轴上方有垂直于纸面向外的匀强磁场,初速度为0的质子、氘核混合物经电压为U的电场加速后,从x轴上的A()点沿与
的方向进入第二象限(速度方向与磁场方向垂直),质子刚好从坐标原点离开磁场.已知质子、氘核的电荷量均为
,质量分别为m、2m,忽略质子、氘核的重力及其相互作用.
(1)求质子进入磁场时速度的大小;
(2)求质子与氘核在磁场中运动的时间之比;
(3)若在x轴上接收氘核,求接收器所在位置的横坐标.
在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m带有电量为q的粒子以一定的速度,沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计粒子重力影响).
(1)如果粒子恰好从A点射出磁场,求入射粒子的速度v1.
(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图所示).求入射粒子的速度v2.
如图所示,虚线OC与y轴的夹角θ=60°,在此角范围内有一方向垂直于xOy平面向外、磁感应强度大小为B的匀强磁场。一质量为m、电荷量为q的带正电的粒子a(不计重力)从y轴的点M(0,L)沿x 轴的正方向射入磁场中。求:
(1)要使粒子a离开磁场后垂直经过x轴,该粒子的初速度v1为多大;
(2)若大量粒子a同时以v2=从M点沿xOy平面的各个方向射入磁场中,则从OC边界最先射出的粒子与最后射出的粒子的时间差。