如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点M、N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.
斜率为2的直线经过抛物线的焦点,且与抛物线相交于两点,求线段的长.
已知:“直线与圆相交”;:“方程的两根异号”.若为真,为真,求实数的取值范围.
已知抛物线C:,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且. (1)求过点P,且与C恰有一个公共点的直线的方程; (2)求证:QR过定点.
已知椭圆过点离心率, (1)求椭圆方程; (2)若过点的直线与椭圆C交于A、B两点,且以AB为直径的圆过原点,试求直线的方程.
如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点. 求证:(1)平面; (2)求二面角的余弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号