如图,已知四棱锥,底面
是等腰梯形,
且∥
,
是
中点,
平面
,
,
是
中点.
(1)证明:平面平面
;
(2)求平面与平面
所成锐二面角的余弦值.
已知||=4,|
|=8,
与
的夹角是120°
(1)计算|+
|,|4
﹣2
|;
(2)当k为何值时,(+2
)⊥(k
﹣
)
已知f(x)=(x≠a).
(1)若a=﹣2,试证f(x)在(﹣∞,﹣2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
已知f(x)=(n∈Z).
(1)化简f(x)的表达式;
(2)求f()+f(
π).
已知集合M{h(x)|h(x)的定义域为R,且对任意x都有h(﹣x)=﹣h(x)}设函数f(x)=(a,b为常数).
(1)当a=b=1时,判断是否有f(x)∈M,说明理由;
(2)若函数f(x)∈M,且对任意的x都有f(x)<sinθ成立,求θ的取值范围.
若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)是“可拆函数”.
(1)函数f(x)=是否是“可拆函数”?请说明理由;
(2)若函数f(x)=2x+b+2x是“可拆函数”,求实数b的取值范围:
(3)证明:f(x)=cosx是“可拆函数”.