某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值
(单位:元,
)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润表示成
的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
已知圆的圆心与点
关于直线
对称,直线
与圆
相交于
两点,且
,求圆
的方程.
在圆锥中,已知
,
的直径
,点
在底面圆周上,且
,
为
的中点.
(1)证明:平面
;
(2)求点到面
的距离.
命题: 关于
的不等式
,对一切
恒成立; 命题
: 函数
在
上是增函数.若
或
为真,
且
为假,求实数
的取值范围.
抛物线的方程为
,过抛物线
上一点
(
)作斜率为
的两条直线分别交抛物线
于
两点(
三点互不相同),且满足
(
且
).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线上一点
,满足
,证明线段
的中点在
轴上;
(3)当=1时,若点
的坐标为
,求
为钝角时点
的纵坐标
的取值范围.