已知圆:
,点
,直线
.
(1)求与圆相切,且与直线
垂直的直线方程;
(2)在直线上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上的任一点
,都有
为一常数,试求出所有满足条件的点
的坐标.
如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点F在DE上,且AF⊥DE,若圆柱的侧面积与△ABE的面积之比等于4π。
(Ⅰ)求证:AF⊥BD;
(Ⅱ)求二面角A―BD―E的正弦值。
已知定义在R上的函数,其中a为常数.[来(1)若x=1是函数
的一个极值点,求a的值;(2)若函数
在区间(-1,0)上是增函数
,求a的取值范围;[(3)若函数
,在x=0处取得最大值,求正数a的取值范围.
已知数列的前n项和为
,且
(1)求数列
的通项公式;(2)设数列
满足:
,且
,求证:
;(3)求证:
。
已知数列及函数f(x)=
,
,对于任意
均有
⑴试计算
的值.⑵若
,求数列
的通项公式.⑶试比较
与
的大小.
已知各项均为正数的数列满足
≤
.(1)若
,
时,求
的通项公式; (2)若
,A=1,证明: