游客
题文

已知数列的各项均满足
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为,求证:对于任意的正数,总有.

科目 数学   题型 解答题   难度 中等
知识点: 等比数列
登录免费查看答案和解析
相关试题

(本小题满分7分)《选修4-4:坐标系与参数方程》
已知曲线为参数),为参数).
(Ⅰ)化的方程为普通方程;
(Ⅱ)若上的点对应的参数为上的动点,求中点到直线为参数)距离的最小值.

(本小题满分7分)选修4—2:矩阵与变换
在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换
(Ⅰ)求复合变换的坐标变换公式;
(Ⅱ)求圆C:x2+ y2 =1在复合变换的作用下所得曲线的方程.

(本小题满分14分)若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点

(1)求椭圆的方程;
(2)求的最小值,并求此时圆的方程;
(3)设点是椭圆上异于的任意一点,且直线分别与轴交于点为坐标原点,求证:为定值.

某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.
若果园恰能在约定日期(日)将水果送到,则销售商一次性支付给果园20万元; 若在约定日期前送到,每提前一天销售商将多支付给果园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.
为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息:

统计信息
汽车行驶路线
不堵车的情况下到达城市乙所需 时间(天)
堵车的情况下到达城市乙所需时间(天)
堵车的概率
运费(万元)
公路1
2
3


公路2
1
4



(注:毛利润销售商支付给果园的费用运费)
(1)记汽车走公路1时果园获得的毛利润为(单位:万元),求的分布列和数学期望;
(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号