设是首项为
,公差为
的等差数列(d≠0),
是其前
项和.记bn=
,
,其中
为实数.
(1) 若,且
,
,
成等比数列,证明:Snk=n2Sk(k,n∈N+);
(2) 若是等差数列,证明:
.
设数列的前
项和为
.已知
,
=an+1-
n2-n-
(
)
(1) 求的值;
(2) 求数列的通项公式;
(3) 证明:对一切正整数,有
+
+…+
<
.
已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;
(2)求数列{}的前n项和.
已知函数f(x)=(2cos2x-1)sin2x+cos4x
(1)求f(x)的最小正周期及最大值。
(2)设A,B,C为△ABC的三个内角,若cosB=,f(
)=-
,且角A为钝角,求sinC
已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程