某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比.
已知商品单价降低2元时,一星期多卖出8件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
已知函数是
上的偶函数.
(1)求的值;
(2)证明函数在
上是增函数.
如图,A、B、C、D是空间四点,在△ABC中,AB=2,AC=BC=,等边△ADB所在的平面以AB为轴可转动.
(Ⅰ)当平面ADB⊥平面ABC时,求三棱锥的体积;
(Ⅱ)当△ADB转动过程中,是否总有AB⊥CD?请证明你的结论
根据市场调查,某商品在最近的20天内的价格
与时间
满足关系
,销售量
与时间
满足关系
,
,设商品的日销售额为
(销售量与价格之积).
(1)求商品的日销售额
的解析式;
(2)求商品的日销售额的最大值.
如图,在正方体ABCD—A1B1C1D1中,M、N、G分别是A1A,D1C,AD的中点.求证:
(Ⅰ)MN//平面ABCD;
(Ⅱ)MN⊥平面B1BG.
计算下列各式:
(1);(2)