一张边长为正方形的纸片,剪去两个面积一定且一样的小长方形得到一个“
”图案如图1所示.小长方形的的相邻两边长
与
之间的函数关系如图2所示:
(1)求与
之间的函数关系式;
(2)“”图案的面积是多少?
(3)如果小长方形中满足
,
求其相邻边长的范围.
某市为治理污水,需要铺设一段全长为的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加
,结果提前
天完成这一任务,实际每天铺设多长管道?
如图,在直角坐标系中,点是反比例函数
的图象上一点,
轴的正半轴于
点,
是
的中点;一次函数
的图象经过
、
两点,并交
轴于点
若
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请写出在轴的右侧,当
时,
的取值范围.
中
,
,
,将
折叠到
边上得到
,折痕
,求
的面积.
如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角△MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.绕点O顺时针旋转△MON,其中旋转的角度为α(0<α<360°).
(1)将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为度;
(2)将图1中的直角△MON旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM
与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角△MON从图1旋转到图3的位置的过程中,若直角△MON绕点O按每秒25°的速度顺时针旋转,当直角△MON的直角边ON所在直线恰好平分∠AOC时,求此时直角△MON绕点O的运动时间t的值.