如图,设,且
.当
时,定义平面坐标系
为
-仿射坐标系,在
-仿射坐标系中,任意一点
的斜坐标这样定义:
分别为与
轴、
轴正向相同的单位向量,若
,则记为
,那么在以下的结论中,正确的有.(填上所有正确结论的序号)
①设、
,若
,则
;
②设,则
;
③设、
,若
,则
;
④设、
,若
,则
;
⑤设、
,若
与
的夹角
,则
.
甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,给该机打进的电话是打给甲、乙、丙的概率分别是,在一段时间内该电话机共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是(用分数作答)
=
点的极坐标为
正四面体(即四条棱均相等的三棱锥)的4个面上分别写有数字1,2,3,4,将3个这样大小相同、质地均匀的正四面体同时投掷于桌面上。记为与桌面接触的3个面上的3个数字中最大值与最小值之差的绝对值,则随机变量
的期望
等于。
对于三次函数,定义
是函数
的导函数。若方程
有实数解
,则称点
为函数
的“拐点”。有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心。根据这一发现,对于函数
,
则的值为。