游客
题文

大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:

阅读过莫言的
作品数(篇)
0~25
26~50
51~75
76~100
101~130
男生
3
6
11
18
12
女生
4
8
13
15
10

(1)试估计该校学生阅读莫言作品超过50篇的概率;
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?

 
非常了解
一般了解
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 

附:


0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i
(1)与复数2-12i相等;
(2)与复数12+16i互为共轭复数;
(3)对应的点在x轴的上方.

复数z1+(10-a2)i,z2+(2a-5)i,若+z2是实数,求实数a的值.

在△ABC中,已知2·||·||=3||2,求角A,B,C的大小.

已知向量m=(2cosx,cosx-sinx),n=(sin(x+),sinx),且满足f(x)=m·n.
(1)求函数y=f(x)的单调递增区间;
(2)设△ABC的内角A满足f(A)=2,a、b、c分别为角A、B、C所对的边,且·,求边BC的最小值.

在△ABC中,角A、B、C的对边分别为a、b、c.若··=k(k∈R).
(1)判断△ABC的形状;
(2)若k=2,求b的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号