已知点点
分别是
轴和
轴上的动点,且
,动点
满足
,设动点
的轨迹为E.
(1)求曲线E的方程;
(2)点Q(1,a),M,N为曲线E上不同的三点,且,过M,N两点分别作曲线E的切线,记两切线的交点为
,求
的最小值.
已知四边形为菱形,
,两个正三棱锥
(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,点
分别在
上,且
.
(Ⅰ)求证:;
(Ⅱ)求平面与底面
所成锐二面角的平面角的正切值;
(Ⅲ)求多面体的体积.
奇瑞公司生产的“奇瑞”轿车是我国民族汽车品牌.该公司2009年生产的“旗云”、“风云”、“ ”三类经济型轿车中,每类轿车均有舒适和标准两种型号.某周产量如下表:
车型 |
旗云 |
风云 |
![]() |
舒适 |
100 |
150 |
![]() |
标准 |
300 |
![]() |
600 |
若按分层抽样的方法在这一周生产的轿车中抽取50辆进行检测,则必须抽取“旗云”轿车10辆, “风云”轿车15辆.
(Ⅰ)求,
的值;
(Ⅱ)在年终促销活动中,奖给了某优秀销售公司2辆舒适型和3辆标准型“ ”轿车,该销售公司又从中随机抽取了2辆作为奖品回馈消费者.求至少有一辆是舒适型轿车的概率;
(Ⅲ)今从“风云”类轿车中抽取6辆,进行能耗等各项指标综合评价,并打分如下:
9.0 9.2 9.5 8.8 9.6 9.7
现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为,求
的分布列及数学期望.
求函数在
处的导数;
求下列函数的导数:
(1);(2)
;(3)
.
设个不全相等的正数
依次围成一个圆圈。
(Ⅰ)若,且
是公差为
的等差数列,而
是公比为
的等比数列;数列
的前
项和
满足:
,求通项
;
(Ⅱ)若每个数是其左右相邻两数平方的等比中项,求证:
。