随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市500名居民的工作场所和呼吸系统健康,得到列联表如下:
|
室外工作 |
室内工作 |
合计 |
有呼吸系统疾病 |
150 |
|
|
无呼吸系统疾病 |
|
100 |
|
合计 |
200 |
|
|
(1)补全列联表;
(2)你是否有95%的把握认为感染呼吸系统疾病与工作场所有关;
(3)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.
参考公式与临界值表:K2=
P(K2≥k0) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k0 |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
如图,已知焦点在轴上的椭圆
经过点
,直线
交椭圆于不同的两点.
(1)求该椭圆的标准方程;
(2)求实数的取值范围;
(3)是否存在实数,使△
是以
为直角的直角三角形,若存在,求出
的值,若不存,请说明理由.
某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比.
已知商品单价降低2元时,一星期多卖出8件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。
(1)求证:平面
;
(2)求二面角的大小;
(3)求直线与平面
所成的角的正弦值.
甲、乙两药厂生产同一型号药品,在某次质量检测中,两厂各有5份样品送检,检测的平均得分相等(检测满分为100分,得分高低反映该样品综合质量的高低).成绩统计用茎叶图表示如下:
甲 |
乙 |
|
9 8 |
8 |
4 8 9 |
2 1 0 |
9 |
![]() |
(1)求;
(2)某医院计划采购一批该型号药品,从质量的稳定性角度考虑,你认为采购哪个药厂的产品
比较合适?
(3)检测单位从甲厂送检的样品中任取两份作进一步分析,在抽取的两份样品中,求至少有一份得分在(90,100]之间的概率.
设命题:函数
在区间
上单调递减;命题
:函数
的最小值不大于0.如果命题
为真命题,
为假命题,求实数
的取值范围.