如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点,
(1).求证:D1E⊥A1D;
(2).在线段AB上是否存在点M,使二面角D1-MC-D的大小为?,若存在,求出AM的长,若不存在,说明理由
用数学归纳法证明:
当实数取何值时,复数
(其中
是虚数单位).
(1)是实数;(2)是纯虚数;(3)等于零.
(1)求复数;(2)求
的模.
(1)已知函数
,其中
为有理数,且
. 求
的最小值;
(2)试用(1)的结果证明如下命题:设
,
为正有理数. 若
,则
;
(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.
注:当
为正有理数时,有求导公式
.
设
是单位圆
上的任意一点,
是过点
与
轴垂直的直线,
是直线
与
 轴的交点,点
在直线
上,且满足
. 当点
在圆上运动时,记点
的轨迹为曲线
.
(Ⅰ)求曲线
的方程,判断曲线
为何种圆锥曲线,并求其焦点坐标;
(Ⅱ)过原点且斜率为
的直线交曲线
于
,
两点,其中
在第一象限,它在
轴上的射影为点
,直线
交曲线
于另一点
. 是否存在
,使得对任意的
,都有
?若存在,求
的值;若不存在,请说明理由.