如图1,
,
,过动点A作
,垂足D在线段BC上且异于点B,连接AB,沿
将△
折起,使
(如图2所示).
(1)当
的长为多少时,三棱锥
的体积最大;
(2)当三棱锥
的体积最大时,设点
,
分别为棱
,
的中点,试在棱
上确定一点
,使得
,并求
与平面
所成角的大小.
已知定义在实数集R上的函数y=
满足条件:对于任意实数x、y都有f(x+y)=f(x)+f(y).(1)求f(0);(2) 求证:
是奇函数;(3) 若
时,
,求
在
上的值域.
已知函数
(1)求函数
的定义域;
(2)记函数
求函数
的值域.
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为
,则出厂价相应提高的比例为
,同时预计年销售量增加的比例为
.已知年利润=(出厂价–投入成本)
年销售量.
(1)写出本年度预计的年利润
与投入成本增加的比例
的关系式;
(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例
应在什么范围内?
设全集为R,集合
或
,
.
(1)求
,
;
(2)已知
,若
,求实数
的取值范围.
已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在[-5,5]上是单调增函数.