游客
题文

想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:

年龄/周岁
3
4
5
6
7
8
9
身高/cm
91.8
97.6
104.2
110.9
115.6
122.0
128.5
 
年龄/周岁
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0

(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分12分)
如图,在四棱台ABCD—A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(1)求证:B1B//平面D1AC;
(2)求二面角B1—AD1—C的余弦值.

(本小题满分12分)
设函数
(1)写出函数的最小正周期及单调递减区间;
(2)当时,函数的最大值与最小值的和为,求的图象、轴的正半轴及x轴的正半轴三者围成图形的面积.

若直线与连接两点的线段有交点,求实数的取值范围.

已知在ABCD中,点A(1,1),B(2,3),CD的中点为E(4,1),将
ABCD按向量a平移,使C点移到原点O.
(1)求向量a
(2)求平移后的平行四边形的四个顶点的坐标.

(本小题满分12分)
已知函数.
(Ⅰ)当时,使不等式,求实数的取值范围;
(Ⅱ)若在区间上,函数的图象恒在直线的下方,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号