想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:
年龄/周岁 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
身高/cm |
91.8 |
97.6 |
104.2 |
110.9 |
115.6 |
122.0 |
128.5 |
|
|||||||
年龄/周岁 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
身高/cm |
134.2 |
140.8 |
147.6 |
154.2 |
160.9 |
167.5 |
173.0 |
(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.
(本小题满分12分)
如图,在四棱台ABCD—A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(1)求证:B1B//平面D1AC;
(2)求二面角B1—AD1—C的余弦值.
(本小题满分12分)
设函数.
(1)写出函数的最小正周期及单调递减区间;
(2)当时,函数
的最大值与最小值的和为
,求
的图象、
轴的正半轴及x轴的正半轴三者围成图形的面积.
若直线与连接
两点的线段有交点,求实数
的取值范围.
已知在□ABCD中,点A(1,1),B(2,3),CD的中点为E(4,1),将
□ABCD按向量a平移,使C点移到原点O.
(1)求向量a;
(2)求平移后的平行四边形的四个顶点的坐标.
(本小题满分12分)
已知函数.
(Ⅰ)当时,
使不等式
,求实数
的取值范围;
(Ⅱ)若在区间上,函数
的图象恒在直线
的下方,求实数
的取值范围.