某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班
人,吴老师采用
、
两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取
名学生的成绩进行统计,作出的茎叶图如下:
记成绩不低于分者为“成绩优秀”.
(1)在乙班样本的个个体中,从不低于
分的成绩中随机抽取
个,记随机变量
为抽到“成绩优秀”的个数,求
的分布列及数学期望
;
(2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?
|
甲班(![]() |
乙班(![]() |
总计 |
成绩优秀 |
|
|
|
成绩不优秀 |
|
|
|
总计 |
|
|
|
已知集合.
(1)当时,求
;
(2)求使的实数
的取值范围.
已知z为复数,和
均为实数,其中
是虚数单位.
(1)求复数z;
(2)若复数在复平面上对应的点在第一象限,求实数a的取值范围.
(1)已知函数f(x)=x
-ax+(a-1)
,
。讨论函数
的单调性;
(2).已知函数f (x)=lnx,g(x)=ex.设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由。
如图,己知平行四边形ABCD中,∠ BAD = 600,AB=6, AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG。
(I)求证:直线CE//平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值.
(Ⅲ)若直线AF与平面 ABCD所成角为,求证:FG⊥平面ABCD
如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个 管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,
2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量
的分布列及期望
;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量
为获得1等奖或2等奖的人次,求
.