已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=( )
A.﹣e | B.﹣1 | C.1 | D.e |
函数f1(x)=cosx﹣sinx,记f2(x)=f1′(x),f3(x)=f2′(x),…fn(x)=fn﹣1′(x),(n∈N*,n≥2),则=()
A.![]() |
B.![]() |
C.0 | D.2008 |
若函数f(x)在R上可导,且满足f(x)>xf′(x),则()
A.3f(1)>f(3) | B.3f(1)<f(3) | C.3f(1)=f(3) | D.f(1)=f(3) |
函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1﹣x2|的取值范围是()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣x3]=2,则方程f(x)﹣f′(x)=2的解所在的区间是()
A.(0,1) | B.(1,2) | C.(2,3) | D.(3,4) |