(本小题满分7分)选修4—2:矩阵与变换
若二阶矩阵满足
.
(Ⅰ)求二阶矩阵;
(Ⅱ)把矩阵所对应的变换作用在曲线
上,求所得曲线的方程.
已知函数
(Ⅰ)若时,函数
在其定义域上是增函数,求b的取值范围;
(Ⅱ)在(Ⅰ)的结论下,设函数求
的最小值;
(Ⅲ)设函数的图象C1与函数
的图象C2交于P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
已知椭圆的焦点坐标为(-1,0),
(1,0),过
垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,
(1)求椭圆的方程;
(2)过的直线l与椭圆交于不同的两点M、N,则△
MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
抛掷三枚不同的具有正、反两面的金属制品,假定
正面向上的概率为
,
正面向上的概率为
,
正面向上的概率为t(0<t<1),把这三枚金属制品各抛掷一次,设
表示正面向上的枚数。
(1)求的分布列及数学期望
(用t表示);
(2)令,求数列
的前n项和.
如图, 是正方形,
平面
,
,
.
(Ⅰ) 求证:;
(Ⅱ) 求面FBE和面DBE所形成的锐二面角的余弦值.