已知椭圆的右焦点为
,短轴的端点分别为
,且
.
(1)求椭圆的方程;
(2)过点且斜率为
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围.
设数列的前
项和为
,已知
(n∈N*).
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:当x>0时,
(Ⅲ)令,数列
的前
项和为
.利用(2)的结论证明:当n∈N*且n≥2时,
.
已知椭圆的中心在原点
,离心率
,右焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的上顶点为,在椭圆
上是否存在点
,使得向量
与
共线?若存在,求直线
的方程;若不存在,简要说明理由.
等差数列中,
,公差
,且它的第2项,第5项,第14项分别是等比数列
的第2项,第3项,第4项.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)设数列对任意自然数均有
成立,求
的值.
已知函数.
(Ⅰ)若,求函数
的极值,并指出是极大值还是极小值;
(Ⅱ)若,求证:在区间
上,函数
的图像在函数
的图像的下方.
设三角形ABC的内角所对的边长分别为
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若AC=BC,且边上的中线
的长为
,求
的面积.