经市场调查:生产某产品需投入年固定成本为3万元,每生产万件,需另投入流动成本为
万元,在年产量不足8万件时,
(万元),在年产量不小于8万件时,
(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量
(万件)的函数解析式;
(注:年利润=年销售收入固定成本
流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?
已知点(0,5)及圆
:
.
(1)若直线过
且被圆C截得的线段长为4
,求
的方程;
(2)求过点的圆
的弦的中点的轨迹方程.
如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明:PB∥平面ACM;
(2)证明:AD⊥平面PAC.
(1)求与直线垂直,且与原点的距离为6的直线方程;
(2)求经过直线:
与
:
的交点,且平行于直线
的直线方程.
某校学生研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设f(t)表示学生注意力指标,该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下:(a>0,且a≠1)
若上课后第5分钟时的注意力指标为140,回答下列问题:
(Ⅰ)求a的值;
(Ⅱ)上课后第5分钟时和下课前5分钟时比较,哪个时间注意力更集中?
(Ⅲ)在一节课中,学生的注意力指标至少达到140的时间能保持多长?
已知函数.
(Ⅰ)求证:不论a为何实数f(x)在(﹣∞,+∞)上为增函数;
(Ⅱ)若f(x)为奇函数,求a的值;
(Ⅲ)在(Ⅱ)的条件下,求f(x)在区间[1,5)上的最小值.