某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.(1)求3个学生选择了3门不同的选修课的概率;(2)求恰有2门选修课这3个学生都没有选择的概率;(3)设随机变量X为甲、乙、丙这三个学生选修数学史这门课的人数,求X的分布列.
已知函数 f x = l g x + 1 . (1)若 0 < f 1 - 2 x - f x < 1 ,求 x 的取值范围; (2)若 g x 是以2为周期的偶函数,且当 0 ≤ x ≤ 1 时,有 g x = f x ,求函数 y = g x x ∈ 1 , 2 的反函数.
如图,在三棱锥 P - A B C 中, P A ⊥ 底面 A B C , D 是 P C 的中点.已知 ∠ B A C = π 2 , A B = 2 , A C = 2 3 , P A = 2 .求:
(1)三棱锥 P - A B C 的体积; (2)异面直线 B C 与 A D 所成的角的大小(结果用反三角函数值表示).
求函数的单调区间
实数x取何值时,复数z =(x- 2)+(x + 3)i: (1)是实数?(2)是虚数?(3)是纯虚数?
求证:当a>1时,有
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号