如图,正三角形ABC外接圆的半径为1,点M、N分别是边AB、AC的中点,延长MN与△ABC的外接圆交于点P,求线段NP的长.
已知等差数列的公差
,
是等比数列,又
。
(1)求数列及数列
的通项公式;
(2)设,求数列
的前
项和
。
已知集合
(1)若,求
实数的值;
(2)若,求实数
的取值范围。
(本小题满分12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
(本小题满分12分)
已知函数
(1)若是定义域上的单调函数,求
的取值范围;
(2)若在定义域上有两个极值点
、
,证明:
(本小题满分12分)
已知椭圆的离心率为
,右焦点为(
,0),斜率为1的直线
与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为
.
(1)求椭圆G的方程;
(2)求的面积.