二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(1)求矩阵M;
(2)设直线l在变换M作用下得到了直线m:x-y=4,求l的方程.
(本小题满分12分)
从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得.
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,,a=
-b
,其中
,
为样本平均值.
(本小题满分12分)已知函数,
(1)当时,求不等式
的解集;
(2)设,且当
)时,
,求
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知极坐标系的极点在直角坐标系的原点,极轴与轴的正半轴重合,直线
的参数方程为
(
为参数),圆
的极坐标方程为
.
(1)求直线的普通方程和圆
的直角坐标方程;
(2)若圆上的点到直线
的最大距离为
,求
的值.
(本小题满分12分)已知函数
(Ⅰ)若函数在
处的切线垂直于
轴,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,求函数的单调区间;
(Ⅲ)若恒成立,求实数a的取值范围.
(共12分)已知方程的曲线是圆C
(1)求的取值范围;
(2)当时,求圆C截直线
所得弦长;