(本小题满分12分)
某家电生产企业市场营销部对本厂生产的某种电器进行了市场调查,发现每台的销售利润与该电器的无故障使用时间(单位:年)有关.若
,则销售利润为
元;若
,则销售利润为
元;若
,则销售利润为
元,设每台该种电器的无故障使用时间
,
,
这三种情况发生的概率分别是
,又知
是方程
的两个根,且
.
(1)求的值;
(2)记表示销售两台该种电器的销售利润总和,求
的分布列及期望.
求方程ax2+2x+1=0有且只有一个负实数根的充要条件
指出下列各组命题中,p是q的什么条件?
(1)p:(x-2)(x-3)=0;q:x-2=0.
(2)p:四边形的对角线相等;q:四边形是平行四边形.
(3)p:m<-2,q:方程x2-x-m=0无实根.
分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.
(1)若x、y都是奇数,则x+y是偶数;
(2)若x>2,y>3,则x+y>5.
若集合A={x|x2-2x-8<0},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,试求A∩(∁UB);
(2)若A∩B=∅,求实数m的取值范围;
(3)若A∩B=A,求实数m的取值范围.
已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R}.
(1)若A∩B=[1,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.