设数列是首项为
,公差为
的等差数列,其前
项和为
,且
成等差数列.
(1)求数列的通项公式;
(2)记的前
项和为
,求
.
某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
数学成绩 |
95 |
75 |
80 |
94 |
92 |
65 |
67 |
84 |
98 |
71 |
67 |
93 |
64 |
78 |
77 |
90 |
57 |
83 |
72 |
83 |
物理成绩 |
90 |
63 |
72 |
87 |
91 |
71 |
58 |
82 |
93 |
81 |
77 |
82 |
48 |
85 |
69 |
91 |
61 |
84 |
78 |
86 |
若单科成绩85分以上(含85分),则该科成绩为优秀.(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 |
数学成绩不优秀 |
合计 |
|
物理成绩优秀 |
|||
物理成绩不优秀 |
|||
合计 |
20 |
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
假设有两个分类变量和
,它们的值域分别为
和
,其样本频数列联表(称为
列联表)为:
![]() |
![]() |
合计 |
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
![]() |
则随机变量,其中
为样本容量;
②独立检验随机变量的临界值参考表:
![]() |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
已知函数.
(1)设时,求函数
极大值和极小值;
(2)时讨论函数
的单调区间.
(1)已知等差数列,
(
),求证:
仍为等差数列;
(2)已知等比数列),类比上述性质,写出一个真命题并加以证明.
一艘轮船在航行过程中的燃料费与它的速度的立方成正比例关系,其他与速度无关的费用每小时96元,已知在速度为每小时10公里时,每小时的燃料费是6元,要使行驶1公里所需的费用总和最小,这艘轮船的速度应确定为每小时多少公里?
若