游客
题文

经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示。经销商为下一个销售季度购进了130t该农产品。以x(单位:t,100≤x≤150)表示下一个销售季度内经销该农产品的数量,T表示利润.

(1)将T表示为x的函数
(2)根据直方图估计利润T不少于57000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x,则取x=105,且x=105的概率等于需求量落入[100,110,求T的数学期望.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设函数),
(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;
(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

如图,三棱柱中,⊥面=3,的中点.

(1)求证:
(2)求二面角的余弦值;
(3)在侧棱上是否存在点,使得?并证明你的结论.

为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:

(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

(12分) 如图,在四边形中,
.
(1)求边的长;
(2)求四边形的面积;
(3)求的值.

已知椭圆的参数方程 (为参数),求椭圆上一点P到直线为参数)的最短距离。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号