游客
题文

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,并说明理由;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并并说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心 解直角三角形
登录免费查看答案和解析
相关试题

已知在△ABC中,是△ABC 的三条边,且
证明

如果不等式和不等式的解集相同,请确定的值。

已知△ABC中,三边长分别为5,12,13,与其相似的三角形△A,B,C,最短边长为10,求△A,B,C,的面积。

如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB 的面积为2.若直线 y="ax+b" 经过点A,并且经过反比例函数的图象上另一点C(n,一2).

(1)求反比例函数与直线y=ax+b的解析式;
(2)根据所给条件,直接写出不等式 ax+b≥的解集_________________;
(3)求出线段OA的长,并思考:在x轴上是否存在一点P,使得△PAO是等腰三角形,如果存在,请求出P的坐标,如果不存在,请说明理由。

某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号