能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本电中性的两极板中的一个极板移到另一个极板的过程. 在移动过程中克服电场力做功,电源的电能转化为电容器的电场能.实验表明:电容器两极间的电压与电容器所带电量如图所示.
(1)对于直线运动,教科书中讲解了由v-t图像求位移的方法.请你借鉴此方法,根据图示的Q-U图像,若电容器电容为C,两极板间电压为U,求电容器所储存的电场能.
(2)如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为C的电容器.框架上一质量为m、长为L的金属棒平行于地面放置,离地面的高度为h.磁感应强度为B的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.
求a. 金属棒落地时的速度大小
b. 金属棒从静止释放到落到地面的时间
如图所示,A、B是两块竖直放置的平行金属板,相距为2L,分别带有等量的负、正电荷,在两板间形成电场强度大小为E的匀强电场A板上有一小孔(它的存在对两板间匀强电场分布的影响可忽略不计),孔的下沿右侧有一条与板垂直的水平光滑绝缘轨道,一个质量为m,电荷量为q(q>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处.孔的下沿左侧也有一与板垂直的水平光滑绝缘轨道,轨道上距A板L处有一固定档板,长为L的轻弹簧左端固定在挡板上,右端固定一块轻小的绝缘材料制成的薄板Q.撤去外力释放带电小粒,它将在电场力作用下由静止开始向左运动,穿过小孔后(不与金属板A接触)与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中不损失机械能.小球从接触Q开始,经历时间To第一次把弹簧压缩至最短,然后又被弹簧弹回。由于薄板Q的绝缘性能有所欠缺,使得小球每次离开Q瞬间,小球的电荷量都损失一部分,而变成刚与Q接触时小球电荷量的
求:
(l)小球第一次接触Q时的速度大小,(2)假设小球第n次弹回两板间后向右运动的最远处没有到达B板,试导出小球从第n次接触Q,到本次向右运动至最远处的时间Tn的表达式,
(3)若k=2,且小孔右侧的轨道粗糙与带电小球间的滑动摩擦力为f=qE/4,试求带电小球最终停止的位置距P点的距离.
一物体从某一行星(该星球的半径为地球半径的4/5)表面竖直向上抛出(不计空气阻力)t=0时抛出,得到如图24所示的s-t图象,求物体落到行星表面时的速度和该行星的第一宇宙速度。(可能用到的数据:R地球=6400m,地球的第一宇宙速度取8km/s)
如图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑块从A点由静止释放,滑块沿圆弧轨道运动至B点以v=5m/s的速度水平飞出(g取10m/s2).求:
(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;
(2)小滑块经过B点时对圆轨道的压力大小;
(3)小滑块着地时的速度大小和方向
如图所示,用半径为0.4m的电动滚轮在长薄铁板上表面压轧一道浅槽.薄铁板的长为2.8m、质量为10kg.已知滚轮与铁板、铁板与工作台面间的动摩擦因数分别为0.3和0.1.铁板从一端放人工作台的滚轮下,工作时滚轮对铁板产生恒定的竖直向下的压力为100N,在滚轮的摩擦作用下铁板由静止向前运动并被压轧出一浅槽.已知滚轮转动的角速度恒为5rad/s,g取10m/s2.
(1)通过分析计算,说明铁板将如何运动?
(2)加工一块铁板需要多少时间?
(3)加工一块铁板电动机要消耗多少电能?
我国自主研制的第一颗月球探测卫星“嫦娥一号”的发射成功,标志着我国实施绕月探测工程迈出重要一步。一位勤于思考的同学,为探月宇航员设计了如下实验一劲度系数为k的轻质弹簧上端与质量为m1的物体A相连,下端与质量为m2的物体B相连,开始时 A、B在竖直方向上处于静止状态。现用竖直向上的拉力使 A以大小为a的加速度匀加速运动了时间t,此时B刚好离开地面(已知引力常数G,月球半径为R,不计月球自转)。请你求出:
(1)月球的质量;
(2)环绕在月球表面附近做匀速圆周运动的宇宙飞船的速率