渔船常利用超声波来探测远处鱼群的方位,已知某超声波的频率为1.0×105 Hz,某时刻该超声波在水中传播的波动图象如图所示.
①从该时刻开始计时,画出x=7.5×10-3 m处质点做简谐运动的振动图象(至少一个周期).
②现测得超声波信号从渔船到鱼群往返一次所用的时间为4 s,求鱼群与渔船间的距离(忽略船和鱼群的运动).
如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=lm,电阻R1=3Ω,R2=1.5Ω,导轨上放一质量m=1kg的金属杆,长度与金属导轨等宽,与导轨接触良好,金属杆的电阻r=1.0Ω,导轨电阻忽略不计,整个装置处于磁感应强度B=1.0T的匀强磁场中,磁场的方向垂直导轨平面向下。现用一拉力F沿水平方向拉杆,使金属杆由静止开始运动。图乙所示为通过金属杆中的电流平方(I2)随位移(x)变化的图线,当金属杆运动位移为5m时,求:
(1)金属杆的动能;
(2)安培力的功率;
(3)拉力F的大小。
如图所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行光滑的金属导轨MN与PQ,导轨的电阻忽略不计。在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻,导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。当金属棒以速度v=4.0m/s向左做匀速运动时,试求:
(1)电阻R中的电流强度大小和方向;
(2)使金属棒做匀速运动的外力;
(3)金属棒ab两端点间的电势差。
如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°。匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直。质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:
(1)导体棒到达轨道底端时的速度大小;
(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;
(3)整个运动过程中,电阻R产生的焦耳热Q。
如图所示,在倾角为θ=30°的斜面上,固定一宽L=0.25 m的平行金属导轨,在导轨上端接入电源和滑动变阻器R。电源电动势E=12 V,内阻r=1 Ω,一质量m=20 g的金属棒ab与两导轨垂直并接触良好。整个装置处于磁感应强度B=0.80 T、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计)。金属导轨是光滑的,取g=10 m/s2,要保持金属棒在导轨上静止,求:
(1)金属棒所受到的安培力的大小;
(2)通过金属棒的电流的大小;
(3)滑动变阻器R接入电路中的阻值。
如图所示,在x轴上方有磁感应强度为B的匀强磁场,一个质量为m,电荷量为的粒子,以速度v从O点射入磁场,已知
,粒子重力不计,求:
(1)粒子的运动半径,并在图中定性地画出粒子在磁场中运动的轨迹;
(2)粒子在磁场中运动的时间;
(3)粒子经过x轴和y轴时的坐标。