如图,三棱柱中,
平面
,
,
,
.以
,
为邻边作平行四边形
,连接
和
.
(1)求证:∥平面
;
(2)求直线与平面
所成角的正弦值;
(3)线段上是否存在点
,使平面
与平面
垂直?若存在,求出
的长;若
不存在,说明理由.
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点
的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率的直线
使直线
与椭圆相交于不同的两点M,N满足
,若存在,求直线l的方程;若不存在,说明理由。
设函数.
(1)求f(x)的单调区间和极值;
(2)关于的方程f(x)=a在区间
上有两个根,求a的取值范围.
已知抛物线.命题p: 直线l1:
与抛物线C有公共点.命题q: 直线l2:
被抛物线C所截得的线段长大于2.若
为假,
为真,求k的取值范围.
已知圆C过原点且与相切,且圆心C在直线
上.
(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且
, 求直线l的方程.
已知关于的不等式
的解集为
.
(1)求实数a,b的值;
(2)解关于的不等式
(c为常数).