在数列中,若
(
,
,
为常数),则称
为
数列.
(1)若数列是
数列,
,
,写出所有满足条件的数列
的前
项;
(2)证明:一个等比数列为数列的充要条件是公比为
或
;
(3)若数列
满足
,
,
,设数列
的前
项和为
.是否存在
正整数,使不等式
对一切
都成立?若存在,求出
的值;
若不存在,说明理由.
函数,
(1)若的定义域为
,求实数
的取值范围.
(2)若的定义域为[-2,1],求实数a的值.
已知,数列{an}满足:
,
.
(Ⅰ)求证:;
(Ⅱ)判断an与an+1的大小,并说明理由.
已知函数,
.
(Ⅰ)求函数的最大值;
(Ⅱ)对于一切正数,恒有
成立,求实数
的取值组成的集合.
如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E、F分别为棱BC、AD的中点.
(Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值;
(Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.
QQ先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼).
(Ⅰ)求这7条鱼中至少有6条被QQ先生吃掉的概率;
(Ⅱ)以表示这7条鱼中被QQ先生吃掉的鱼的条数,求
的分布列及其数学期望
.