在数列中,若(,,为常数),则称为数列.(1)若数列是数列,,,写出所有满足条件的数列的前项;(2)证明:一个等比数列为数列的充要条件是公比为或;(3)若数列满足,,,设数列的前项和为.是否存在正整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由.
已知,是否存在不小于2的正整数,使得对于任意的正整数都能被整除?如果存在,求出最大的值;如果不存在,请说明理由.
数列的前项和,先计算数列的前4项,后猜想并证明之.
用数学归纳法证明:.
平面上有条抛物线,其中每两条都相交于两点,并且每三条都不相交于同一点,则这条抛物线把平面分成多少个部分?
已知是定义在上的不恒为零的函数,且对任意的都满足:,若,(),求证:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号