游客
题文

如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.
(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;
(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;
(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.

科目 数学   题型 解答题   难度 较难
知识点: 对称式和轮换对称式 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在 ΔABC 中, AC=BC D AB 上一点, O 经过点 A C D ,交 BC 于点 E ,过点 D DF//BC ,交 O 于点 F

求证:(1)四边形 DBCF 是平行四边形;

(2) AF=EF

如图,在港口 A 处的正东方向有两个相距 6km 的观测点 B C .一艘轮船从 A 处出发,沿北偏东 26° 方向航行至 D 处,在 B C 处分别测得 ABD=45° C=37° .求轮船航行的距离 AD .(参考数据: sin26°0.44 cos26°0.90 tan26°0.49 sin37°0.60 cos37°0.80 tan37°0.75 )

甲、乙两人分别从 A B C 这3个景点中随机选择2个景点游览.

(1)求甲选择的2个景点是 A B 的概率;

(2)甲、乙两人选择的2个景点恰好相同的概率是  

为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位: kW·h) 进行调查,整理样本数据得到下面的频数分布表.

组别

用电量分组

频数

1

8x<93

50

2

93x<178

100

3

178x<263

34

4

263x<348

11

5

348x<433

1

6

433x<518

1

7

518x<603

2

8

603x<688

1

根据抽样调查的结果,回答下列问题:

(1)该地这200户居民六月份的用电量的中位数落在第 2 组内;

(2)估计该地1万户居民六月份的用电量低于 178kW·h 的大约有多少户.

已知反比例函数 y = k x 的图象经过点 ( - 2 , - 1 )

(1)求 k 的值.

(2)完成下面的解答.

解不等式组 2 - x > 1 , k x > 1

解:解不等式①,得   x < 1  

根据函数 y = k x 的图象,得不等式②的解集   

把不等式①和②的解集在数轴上表示出来.

从图中可以找出两个不等式解集的公共部分,得不等式组的解集   

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号